

Fig. 1. The $\left[\mathrm{H}_{3} \mathrm{Os}_{4}(\mathrm{CO})_{12}\right]^{-}$anion.
that one hydride lies on the twofold axis, bridging Os(1)-Os( $1^{\prime}$ ), while the other two bridge $\operatorname{Os}(1)-$ $\mathrm{Os}\left(2^{\prime}\right)$ and $\mathrm{Os}(2)-\mathrm{Os}\left(1^{\prime}\right)$, respectively. Thus, this anion is essentially isostructural with the $C_{2}$ isomer of $\left[\mathrm{H}_{3} \mathrm{Ru}_{4}(\mathrm{CO})_{12}\right]^{-}$, for which it has been shown that both $C_{2}$ and $C_{3 v}$ isomers exist in the solid state (Jackson, Johnson, Lewis, McPartlin \& Nelson, 1978).

None of the $\mathrm{Os}-\mathrm{C}$ or $\mathrm{C}-\mathrm{O}$ lengths deviate from the respective means of 1.863 and $1.178 \AA$ by more than $1 \cdot 3 \sigma$, and the average $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ angle is $177 \cdot 0^{\circ}$. These lengths are not significantly different from the mean
$\mathrm{Os}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances of 1.89 (4) and 1.16 (4) $\AA$ in $\mathrm{Os}_{5}(\mathrm{CO})_{16}$ (Reichert \& Sheldrick, 1977).

The tetramethylammonium cation adopts the expected configuration, having a twofold crystallographic axis passing through the N atom.

We thank the SRC for financial support (to PRR) and the Universidad Metropolitana, Venezuela, for a grant (to CZ). We are grateful to Johnson, Matthey and Co . Ltd for the loan of $\mathrm{OsO}_{4}$. Calculations were performed with the Cambridge University IBM 370/165 computer and programs written by Dr G. M. Sheldrick; the figure was drawn with PLUTO written by Dr W. D. S. Motherwell.

## References

Ciani, G., Sironi, A. \& Albano, V. G. (1977). J. Organomet. Chem. 136, 339-348.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Jackson, P. F., Johnson, B. F. G., Lewis, J., McPartlin, M. \& Nelson, W. J. H. (1978). J. Chem. Soc. Chem. Commun. In the press.
Johnson, B. F. G., Lewis, J., Raithby, P. R., Sheldrick, G. M. \& Süss, G. (1978). J. Organomet. Chem. In the press.
Johnson, B. F. G., Lewis, J., Raithby, P. R., Sheldrick, G. M., Wong, K. \& McPartlin, M. (1978). J. Chem. Soc. Dalton Trans. pp. 673-676.
Raithby, P. R. (1978). In preparation.
Reichert, B. E. \& Sheldrick, G. M. (1977). Acta Cryst. B33, 173-175.

# Bis(triphenylphosphine)iminium $\mu_{2}$-Hydrido- $\mu_{3}$-sulphido-nonacarbonyltriosmate 

By Brian F. G. Johnson, Jack Lewis, David Pippard<br>and Paul R. Raithby<br>University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW, England

(Received 29 August 1978; accepted 19 September 1978)


#### Abstract

C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{HS}\right]\), monoclinic, $P 2_{1} / c, a=9.600$ (3), $b=30.074$ (10), $c=15.946$ ( 8 ) $\AA, \beta=101.15$ (3) ${ }^{\circ}$, $U=4516.9 \AA^{3}, Z=4, D_{c}=2.05$ $\mathrm{Mg} \mathrm{m}{ }^{-3}, \mu(\mathrm{Mo} K c)=8.562 \mathrm{~mm}^{-1}$. The structure was refined to an $R$ of 0.057 for 3186 unique diffractometer data. In the anion the three Os atoms define an isosceles triangle, which is capped by the S atom. The carbonyl groups are all terminal, and the ligand distribution suggests that the hydride bridges the long Os-Os edge.


Introduction. The structure determination of the title compound was undertaken as one of a series in our investigations of the changes in cluster geometry in $\mathrm{Os}_{3} \mathrm{~S}$ systems, due to variations in ionic charge and the number of hydrides present.

The anion was prepared in good yield by treating $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{~S}$ with methanolic KOH , followed by precipitation as the yellow bis(triphenylphosphine)iminium salt (Johnson, Lewis, Pippard \& Raithby, 1978). 5705 intensities were measured ( $3.0<2 \theta \leq$
$50 \cdot 0^{\circ}$ ) on a Syntex $P 2_{1}$ four-circle diffractometer, with graphite-monochromated Mo $K \alpha$ radiation, a $\theta-2 \theta$ scan procedure, and a crystal $0.123 \times 0.175 \times 0.158$ mm . Lp and semi-empirical absorption corrections, based on a pseudo-ellipsoid model and 436 azimuthal scan data from ten independent reflections, were applied; transmission factors ranged from 0.204 to $0 \cdot 248$. The data were averaged to give 3186 unique observed intensities $[I>2 \cdot 5 \sigma(I)$ ]. Cell dimensions were derived from the angular measurements of 15 strong reflections ( $20.0<2 \theta<30 \cdot 0^{\circ}$ ).

The Os atoms were located by multisolution $\sum_{2}$ sign expansion, and the other non-hydrogen atoms from a subsequent difference synthesis. The structure was refined by the blocked-cascade least-squares method (Os and P anisotropic, $\mathrm{C}, \mathrm{N}$ and O isotropic). Phenyl groups were refined as rigid groups with $\mathrm{C}-\mathrm{C} 1 \cdot 395$, $\mathrm{C}-\mathrm{H} 1.08 \AA, \mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{H} 120 \cdot 0^{\circ}$; phenyl H atoms were assigned a common isotropic temperature factor fixed at $0 \cdot 123 \AA^{2}$. The hydridic H atom was not located. An empirical extinction parameter $x$ which refined to a value of 0.00006 (2) was also included; $F_{c}$ is multiplied by ( $1-0.0001 x F_{c}^{2} / \sin \theta$ ). Complex neutral-atom scattering factors (International Tables for X-ray Crystallography, 1974) and a weighting scheme $w=\left[\sigma^{2}(F)+0 \cdot 001\left|F_{o}\right|^{2}\right]^{-1}$, were employed. The refinement converged to $R=0.057$ and $R^{\prime}=\left[\sum w^{1 / 2} \Delta / \sum w^{1 / 2}\left|F_{o}\right|\right]=0.057$. The final atomic coordinates for the non-hydrogen atoms are listed in Table 1 and those for the phenyl H atoms in Table 2. Some important bond lengths and angles are presented in Table 3.*

Discussion. The pseudo-tetrahedral $\mathrm{Os}_{3} \mathrm{~S}$ core of the anion has non-crystallographic $C_{s}(m)$ symmetry. In terms of skeletal electron counting (Eady, Johnson \& Lewis, 1975) the $S$ atom must act as a four-electron donor which results in an 'electron-precise' 48e system.

The two shorter Os-Os bonds (mean $2.768 \AA$ ) are in close agreement with the 2.764 (1) $\AA$ for the nonhydride bridged bond in $\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9} \mathrm{~S}$ (Johnson, Lewis, Pippard, Raithby, Sheldrick \& Rouse, 1978). These distances, in both compounds, are significantly shorter than the average Os-Os distance of 2.877 (1) $\AA$ in $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ (Churchill \& DeBoer, 1977), which illustrates the bond-shortening influence of the $\mu_{3}-\mathrm{S}$ ligand. The long Os - Os length is similar to the mean of $2.915 \AA$ in the dihydride (Johnson, Lewis, Pippard, Raithby, Sheldrick \& Rouse, 1978) for the H-bridged bonds. The carbonyl arrangement (Fig. 1) also suggests that the hydride lies in the hole in the ligand polyhedron close to this long $\mathrm{Os}-\mathrm{Os}$ bond. The cis

[^0]Table 1. Atom coordinates $\left(\times 10^{4}\right)$

|  | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Os}(1)$ | 7060 (1) | 1242 (1) | 2602 (1) |
| Os(2) | 4104 (1) | 1500 (1) | 2117 (1) |
| Os(3) | 4908 (1) | 617 (1) | 2334 (1) |
| S(1) | 5246 (6) | 1159 (3) | 3432 (4) |
| C(11) | 8383 (31) | 856 (11) | 3094 (20) |
| $\mathrm{O}(11)$ | 9086 (22) | 557 (7) | 3509 (14) |
| $\mathrm{C}(12)$ | 8093 (31) | 1746 (11) | 2960 (19) |
| $\mathrm{O}(12)$ | 8766 (24) | 2067 (8) | 3261 (14) |
| C(13) | 7741 (28) | 1146 (9) | 1569 (20) |
| $\mathrm{O}(13)$ | 8051 (23) | 1120 (7) | 925 (15) |
| C(21) | 3911 (38) | 2101 (13) | 2355 (22) |
| $\mathrm{O}(21)$ | 3737 (30) | 2478 (10) | 2373 (18) |
| C(22) | 2255 (29) | 1336 (10) | 2224 (18) |
| $\mathrm{O}(22)$ | 1059 (28) | 1295 (8) | 2188 (16) |
| C(23) | 3708 (27) | 1503 (9) | 924 (18) |
| $\mathrm{O}(23)$ | 3575 (20) | 1482 (6) | 175 (13) |
| C(31) | 3134 (24) | 376 (8) | 2372 (15) |
| $\mathrm{O}(31)$ | 2004 (23) | 213 (7) | 2329 (14) |
| C(32) | 5980 (30) | 101 (10) | 2793 (19) |
| $\mathrm{O}(32)$ | 6626 (22) | -185 (7) | 3145 (13) |
| C(33) | 4960 (27) | 506 (9) | 1188 (17) |
| $\mathrm{O}(33)$ | 5021 (19) | 446 (6) | 496 (12) |
| N(1) | -39 (19) | 1420 (6) | -2576 (11) |
| $\mathrm{P}(1)$ | -369 (6) | 1346 (2) | -1652 (4) |
| P (2) | -627 (6) | 1364 (2) | -3551 (4) |
| C(101) | 342 (16) | 1812 (6) | -1006 (8) |
| C(102) | 1331 (16) | 2090 (6) | -1278 (8) |
| C (103) | 1961 (16) | 2435 (6) | -751 (8) |
| C (104) | 1602 (16) | 2501 (6) | 46 (8) |
| C(105) | 612 (16) | 2224 (6) | 317 (8) |
| C(106) | -18(16) | 1879 (6) | -209 (8) |
| C(111) | 544 (17) | 859 (5) | -1193(10) |
| $\mathrm{C}(112)$ | 662 (17) | 778 (5) | -321 (10) |
| $\mathrm{C}(113)$ | 1319 (17) | 390 (5) | 40 (10) |
| C(114) | 1859 (17) | 84 (5) | -472 (10) |
| C(115) | 1741 (17) | 165 (5) | -1344 (10) |
| C(116) | 1084 (17) | 553 (5) | -1705 (10) |
| C(121) | -2191 (16) | 1278 (4) | -1576 (10) |
| C(122) | -2768(16) | 856 (4) | -1524 (10) |
| C(123) | -4201 (16) | 809 (4) | - 1487 (10) |
| C(124) | -5057 (16) | 1185 (4) | -1501 (10) |
| C(125) | -4480 (16) | 1607 (4) | -1553 (10) |
| C(126) | -3047 (16) | 1654 (4) | -1590 (10) |
| C(201) | -1606 (13) | 862 (6) | -3861 (11) |
| C(202) | -936 (13) | 486 (6) | -4110 (11) |
| C(203) | -1715 (13) | 100 (6) | -4349 (11) |
| C(204) | -3164 (13) | 89 (6) | -4340 (11) |
| C(205) | -3835 (13) | 464 (6) | -4092 (11) |
| C(206) | -3056 (13) | 851 (6) | -3852 (11) |
| C(211) | -1812 (18) | 1810 (5) | -3970 (9) |
| C(212) | -2600 (18) | 1777 (5) | -4800 (9) |
| C(213) | -3482 (18) | 2126 (5) | -5418 (9) |
| C(214) | -3576 (18) | 2508 (5) | -4667 (9) |
| C(215) | -2787 (18) | 2541 (5) | -3837 (9) |
| C(216) | -1905 (18) | 2192 (5) | -3489 (9) |
| C(221) | 902 (17) | 1368 (6) | -4058 (8) |
| C(222) | 2235 (17) | 1435 (6) | -3543 (8) |
| C(223) | 3449 (17) | 1428 (6) | -3903 (8) |
| C(224) | 3330 (17) | 1355 (6) | -4778 (8) |
| C(225) | 1997 (17) | 1289 (6) | -5293 (8) |
| C(226) | 783 (17) | 1296 (6) | -4933 (8) |

$\mathrm{Os}-\mathrm{Os}-\mathrm{C}$ bond angles involving $\mathrm{Os}(1), \mathrm{Os}(2), \mathrm{C}(12)$, $\mathrm{C}(13), \mathrm{C}(21)$ and $\mathrm{C}(23)$ average $107.5^{\circ}$, the remainder $96.0^{\circ}$. A similar widening of metal-metal-carbonyl

Table 2. Hydrogen-atom coordinates ( $\times 10^{4}$ )

|  | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| H(102) | 1610 (16) | 2039 (6) | -1895 (8) |
| H(103) | 2728 (16) | 2650 (6) | -962 (8) |
| H(104) | 2090 (16) | 2768 (6) | 453 (8) |
| H(105) | 334 (16) | 2275 (6) | 935 (8) |
| H(106) | -784 (16) | 1664 (6) | 1 (8) |
| H(112) | 244 (17) | 1015 (5) | 76 (10) |
| H(113) | 1410 (17) | 327 (5) | 715 (10) |
| H(114) | 2368 (17) | -216 (5) | -193 (10) |
| H(115) | 2159 (17) | -72 (5) | -1741 (10) |
| H(116) | 992 (17) | 616 (5) | -2380 (10) |
| H(122) | -2106 (16) | 565 (4) | -1513 (10) |
| H(123) | -4647 (16) | 482 (4) | -1447 (10) |
| H(124) | -6166 (16) | 1149 (4) | -1472 (10) |
| H(125) | -5142 (16) | 1898 (4) | -1564 (10) |
| H(126) | -2601 (16) | 1981 (4) | -1630 (10) |
| H(202) | 187 (13) | 495 (6) | -4117 (11) |
| H(203) | -1196 (13) | -191 (6) | -4542 (11) |
| H(204) | -3768 (13) | -211(6) | -4526 (11) |
| H(205) | -4957 (13) | 456 (6) | -4084 (11) |
| H(206) | -3575 (13) | 1141 (6) | -3659 (11) |
| H(212) | -2528 (18) | 1480 (5) | -5172 (9) |
| H(213) | -4093 (18) | 2100 (5) | -5790 (9) |
| H(214) | -4259 (18) | 2778 (5) | -4937 (9) |
| H(215) | -2859 (18) | 2837 (5) | -3465 (9) |
| H(216) | -1295 (18) | 2218 (5) | -2846 (9) |
| H(222) | 2327 (17) | 1491 (6) | -2866 (8) |
| H(223) | 4481 (17) | 1479 (6) | -3504 (8) |
| H(224) | 4270 (17) | 1350 (6) | -5056 (8) |
| H(225) | 1905 (17) | 1233 (6) | -5970 (8) |
| H(226) | -249 (17) | 1244 (6) | -5332 (8) |

angles has been observed in $\left[\mathrm{H}_{6} \mathrm{Re}_{4}(\mathrm{CO})_{12}\right]^{1-}$ (Ciani, Sironi \& Albano, 1977) where all the $\mathrm{Re}-\mathrm{Re}$ bonds are considered to be $\mu_{2}-\mathrm{H}$ bridged.
The S atom lies $1.75 \AA$ below the $\mathrm{Os}_{3}$ triangle, on the opposite side of the metal plane to the proposed hydride position. Os(3)-S(1) is slightly shorter than the other two $\mathrm{Os}-\mathrm{S}$ bonds which reflects the difference in coordination geometry and electronic environment of $\mathrm{Os}(3)$ and the other two Os atoms. The anionic charge seems to be delocalized over the $\mathrm{HOs}_{3} \mathrm{~S}$ unit.


Fig. 1. The $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{9} \mathrm{~S}\right]^{-}$anion.

Table 3. Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$

| Anion |  |  |  |
| :---: | :---: | :---: | :---: |
| $\mathrm{Os}(1)-\mathrm{Os}(2) \quad 2.8$ | 2.899 (2) | Os(1)-C(11) | 786 (30) |
| Os(1)-Os(3) 2.76 | 2.766 (2) | Os(1)-C(12) 1.84 | 841 (31) |
| Os(2)-Os(3) 2.76 | 2.769 (3) | Os(1)-C(13) 1.908 | 908 (32) |
| Os(1)-S(1) 2.3 | 2.396 (7) | Os(2)-C(21) 1.86 | 865 (39) |
| Os(2)-S(1) 2.4 | 2.401 (6) | Os(2)-C(22) : 1.88 | 881 (29) |
| Os(3)-S(1) 2.36 | 2.369 (7) | Os(2)-C(23) 1.86 | . 867 (27) |
| $\mathrm{C}(11)-\mathrm{O}(11) \quad 1.237$ | 1.237 (37) | Os(3)-C(31) 1.86 | 863 (24) |
| $\mathrm{C}(12)-\mathrm{O}(12) \quad 1.20$ | 1.208 (38) | Os(3)-C(32) 1.9 | 26 (30) |
| $\mathrm{C}(13)-\mathrm{O}(13) \quad 1.1$ | $1 \cdot 126$ (41) | Os(3)-C(33) 1.8 | 867 (28) |
| $\mathrm{C}(21)-\mathrm{O}(21) \quad 1.1$ | $1 \cdot 147$ (50) | $\mathrm{C}(31)-\mathrm{O}(31) \quad 1$. | 180 (32) |
| $\mathrm{C}(22)-\mathrm{O}(22) \quad 1.1$ | $1 \cdot 145$ (39) | $\mathrm{C}(32)-\mathrm{O}(32) \quad 1$. | 142 (36) |
| $\mathrm{C}(23)-\mathrm{O}(23) \quad 1$. | 1.177 (35) | $\mathrm{C}(33)-\mathrm{O}(33) \quad 1$. | 132 (34) |
| Cation |  |  |  |
| $\mathrm{N}(1)-\mathrm{P}(1) \quad 1.5$ | 1.580 (20) | $\mathrm{N}(1)-\mathrm{P}(2)$ | 557 (17) |
| $\mathrm{P}(1)-\mathrm{C}(101) \quad 1.7$ | 1.796 (16) | $\mathrm{P}(2)-\mathrm{C}(201) \quad 1$. | 798 (17) |
| $\mathrm{P}(1)-\mathrm{C}(111) \quad 1.7$ | 1.789 (16) | $\mathrm{P}(2)-\mathrm{C}(211) \quad 1.8$ | 801 (16) |
| $\mathrm{P}(1)-\mathrm{C}(121) \quad 1.7$ | 1.789 (17) | $\mathrm{P}(2)-\mathrm{C}(221) \quad 1.80$ | 809 (18) |
| Anion |  |  |  |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$ | 58.5 (1) | $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(11)$ | $150 \cdot 1$ (10) |
| $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$ | ) 58.4 (1) | $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(11)$ | 94.1 (10) |
| $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$ | ) $63.2(1)$ | $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(12)$ | 107.7 (10) |
| $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{S}(1)$ | 52.9 (1) | $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(12)$ | 161.8 (10) |
| $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{S}(1)$ | 54.1 (2) | $\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(13)$ | 106.9 (8) |
| $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{S}(1)$ | 52.7 (2) | $\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(13)$ | 97.7 (8) |
| $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{S}(1)$ | 54.0 (2) | $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(21)$ | 109.6 (11) |
| $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{S}(1)$ | 55.0 (2) | $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(21)$ | $160 \cdot 2$ (10) |
| $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{S}(1)$ | 55.0 (2) | $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(22)$ | 143.0 (8) |
| $\mathrm{S}(1)-\mathrm{Os}(1)-\mathrm{C}(11)$ | 102.7 (11) | $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(22)$ | 89.0 (9) |
| $\mathrm{S}(1)-\mathrm{Os}(1)-\mathrm{C}(12)$ | 108.7 (11) | Os(1)-Os(2)-C(23) | 105.6 (8) |
| $\mathrm{S}(1)-\mathrm{Os}(1)-\mathrm{C}(13)$ | $150 \cdot 2$ (8) | $\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(23)$ | 97.4 (8) |
| $\mathrm{S}(1)-\mathrm{Os}(2)-\mathrm{C}(21)$ | 106.4 (10) | Os(1)-Os(3)-C(31) | 156.9 (8) |
| $\mathrm{S}(1)-\mathrm{Os}(2)-\mathrm{C}(22)$ | $95 \cdot 1$ (8) | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(31)$ | 98.2 (8) |
| $\mathrm{S}(1)-\mathrm{Os}(2)-\mathrm{C}(23)$ | 149.5 (8) | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(32)$ | 99.2 (9) |
| $\mathrm{S}(1)-\mathrm{Os}(3)-\mathrm{C}(31)$ | 103.8 (8) | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(32)$ | 159.3 (8) |
| $\mathrm{S}(1)-\mathrm{Os}(3)-\mathrm{C}(32)$ | $106 \cdot 6$ (9) | $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(33)$ | 96.4 (8) |
| $\mathrm{S}(1)-\mathrm{Os}(3)-\mathrm{C}(33)$ | 145.1 (9) | $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(33)$ | $96 \cdot 2$ (8) |
| $\mathrm{Os}(1)-\mathrm{S}(1)-\mathrm{Os}(2)$ | 74.4 (2) | $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(12)$ | 96.0 (14) |
| Os(1)-S(1)-Os(3) | 71.0 (2) | $\mathrm{C}(11)-\mathrm{Os}(1)-\mathrm{C}(13)$ | 87.0 (13) |
| $\mathrm{Os}(2)-\mathrm{S}(1)-\mathrm{Os}(3)$ | 71.0 (2) | $\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(13)$ | 98.0 (13) |
| $\mathrm{Os}(1)-\mathrm{C}(11)-\mathrm{O}(11)$ | ) 167.4 (28) | $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(22)$ | 95.9 (14) |
| $\mathrm{Os}(1)-\mathrm{C}(12)-\mathrm{O}(12)$ | ) $174 \cdot 8(26)$ | $\mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(23)$ | 101.2 (13) |
| $\mathrm{Os}(1)-\mathrm{C}(13)-\mathrm{O}(13)$ | ) 173.3 (24) | $\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(23)$ | 94.8 (12) |
| $\mathrm{Os}(2)-\mathrm{C}(21)-\mathrm{O}(21)$ | ) $169.8(31)$ | $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(32)$ | 95.7 (12) |
| $\mathrm{Os}(2)-\mathrm{C}(22)-\mathrm{O}(22)$ | ) 168.0 (25) | $\mathrm{C}(31)-\mathrm{Os}(3)-\mathrm{C}(33)$ | 99.2 (11) |
| $\mathrm{Os}(2)-\mathrm{C}(23)-\mathrm{O}(23)$ | ) 173.6 (22) | $\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(33)$ | 96.6 (12) |
| $\mathrm{Os}(3)-\mathrm{C}(31)-\mathrm{O}(31)$ | ) 174.6 (22) | $\mathrm{Os}(3)-\mathrm{C}(33)-\mathrm{O}(33)$ | $178 \cdot 2$ (27) |
| $\mathrm{Os}(3)-\mathrm{C}(32)-\mathrm{O}(32)$ | 173.1(27) |  |  |
| Cation |  |  |  |
| $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$ | 144.7 (13) |  |  |
| $\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(101)$ | 107.6 (9) | $\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{C}(201)$ | 115.7 (9) |
| $\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(111)$ | 109.0 (9) | $\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{C}(211)$ | 111.8 (9) |
| $\mathrm{C}(101)-\mathrm{P}(1)-\mathrm{C}(111)$ | 1) 107.6 (7) | $\mathrm{C}(201)-\mathrm{P}(2)-\mathrm{C}(211)$ | 105.3 (7) |
| $\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{C}(121)$ | 117.0 (9) | $\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{C}(221)$ | $106 \cdot 1$ (9) |
| $\mathrm{C}(101)-\mathrm{P}(1)-\mathrm{C}(121)$ | 1) 108.5 (8) | C(201)-P(2)-C(221) | 108.0 (8) |
| $\mathrm{C}(111)-\mathrm{P}(1)-\mathrm{C}(121)$ | 1) 106.7 (8) | $\mathrm{C}(211)-\mathrm{P}(2)-\mathrm{C}(221)$ | 109.7 (8) |
| $\mathrm{P}(1)-\mathrm{C}(101)-\mathrm{C}(102)$ | 2) 119.7 (5) | $\mathrm{P}(2)-\mathrm{C}(201)-\mathrm{C}(202)$ | 120.9 (5) |
| $\mathrm{P}(1)-\mathrm{C}(101)-\mathrm{C}(106)$ | 120.1(5) | $\mathrm{P}(2)-\mathrm{C}(201)-\mathrm{C}(206)$ | 119.1 (5) |
| $\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(112)$ | 2) 119.4 (6) | $\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(212)$ | 119.1 (5) |
| $\mathrm{P}(1)-\mathrm{C}(111)-\mathrm{C}(116)$ | 6) $120 \cdot 5$ (6) | $\mathrm{P}(2)-\mathrm{C}(211)-\mathrm{C}(216)$ | 120.9 (5) |
| $\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(122)$ | 22) 120.8 (5) | $\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(222)$ | 118.0 (4) |
| $\mathrm{P}(1)-\mathrm{C}(121)-\mathrm{C}(126)$ | 26) $119.2(5)$ | $\mathrm{P}(2)-\mathrm{C}(221)-\mathrm{C}(226)$ | $122 \cdot 0$ (4) |

The carbonyl groups are all approximately linear with an average $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ angle of $172.5^{\circ}$. The mean Os-C and C-O distances of 1.87 and $1.17 \AA$, respectively, are similar to the carbonyl dimensions in $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{10} \mathrm{O}_{2} \mathrm{COs}_{6}(\mathrm{CO})_{17}\right]^{-} \quad(\mathrm{Guy} \quad \& \quad$ Sheldrick, 1978a).

The cation dimensions are similar to those in $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{HOs}_{5}(\mathrm{CO})_{15}\right]$ (Guy \& Sheldrick, 1978b), with staggered $\mathrm{PPh}_{3}$ groups.

We thank the Science Research Council for financial support. The calculations were performed on the Cambridge University IBM 370/165 computer with programs written by Dr G. M. Sheldrick; the figure was drawn with PLUTO written by Dr W. D. S. Motherwell.

## References

Churchill, M. R. \& DeBoer, B. G. (1977). Inorg. Chem. 16, 878-884.

Ciani, G., Sironi, A. \& Albano, V. G. (1977). J. Organomet. Chem. 136, 339-348.
Eady, C. R., Johnson, B. F. G. \& Lewis, J. (1975). J. Chem. Soc. Dalton Trans. pp. 2606-2611.
Guy, J. J. \& Sheldrick, G. M. (1978a). Acta Cryst. B34, 1718-1722.
Guy, J. J. \& Sheldrick, G. M. (1978b). Acta Cryst. B34, 1722-1725.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, B. F. G., Lewis, J., Pippard, D. \& Raithby, P. R. (1978). J. Chem. Soc. Chem. Commun. pp. 551-552.

Johnson, B. F. G., Lewis, J., Pippard, D., Raithby, P. R., Sheldrick, G. M. \& Rouse, K. D. (1978). J. Chem. Soc. Dalton Trans. In the press.

Acta Cryst. (1978). B34, 3770-3772

# Tetrakis(acetylacetonato)thorium(IV) Hemibenzene 

By Magnus Lenner<br>Department of Inorganic Chemistry, Chalmers University of Technology and the University of Göteborg, PO Box, $S-40220$ Göteborg, Sweden

(Received 18 August 1978; accepted 25 September 1978)


#### Abstract

Th}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{4} \cdot \frac{1}{2} \mathrm{C}_{6} \mathrm{H}_{6}\), triclinic, $P \overline{1}, a=$ 11.591 (4), $b=14.153$ (2), $c=9.229$ (3) $\AA, a=$ $94.20(2), \beta=106.50(2), \gamma=113.51(2)^{\circ}, \mathrm{FW}=$ $667 \cdot 6, Z=2, D_{x}=1.670 \mathrm{Mg} \mathrm{m}^{-3}, R=0.037,4181$ observed reflections. The inner coordination polyhedron around the Th atom is a square antiprism ( $D_{4 d}-\overline{8} 2 \mathrm{~m}$ ). Of the four acetylacetonate ligands, two have a fold angle of about $16^{\circ}$ over the line joining the two $O$ atoms within the ligand, while the corresponding angle for the remaining two ligands is close to $3^{\circ}$.


Introduction. During investigations of the coordination of Th in chelate complexes with $\beta$-diketones, the title compound has been synthesized and its structure investigated. A preliminary structure analysis, with the results of IR measurements, has been published (Allard, 1976). This is the only reported organic solvate of a tetravalent metal acetylacetonate. It is of interest to find out if the benzene molecules influence the coordination around Th.

The complex, $\mathrm{Th}(\mathrm{AA})_{4}$, was precipitated by mixing aqueous solutions of $\mathrm{Th}\left(\mathrm{NO}_{3}\right)_{4}$, ammonia and acetylacetone. The precipitate was recrystallized from benzene at room temperature.

The diffraction data were collected on a Syntex $P 2_{1}$ computer-controlled four-circle diffractometer. The parameters of the cell were determined by a leastsquares procedure from the coordinates of 15 reflec-
tions. The intensities of 4501 independent reflections were measured up to $2 \theta=50^{\circ}$ with graphite-monochromatized Mo $K \alpha$ radiation $(\lambda=0.71069 \AA)$. A standard reflection, measured after every 25 reflections, gave no indication of crystal decay. The intensities were corrected for Lorentz and polarization effects but not for absorption. 4181 reflections had intensities $>3 \sigma$. The Th atom was located from a Patterson synthesis and the remaining non-hydrogen atoms by a subsequent Fourier synthesis. The structure was refined by a block-diagonal least-squares method (Lindgren, 1977) with anisotropic thermal parameters and an overall scale factor. The final $R$ was 0.037 . Scattering factors were those of Doyle \& Turner (1968) for C and O, and for Th those of Cromer \& Waber (1965). Correction for the real part of the anomalous dispersion was made (International Tables for X-ray Crystallography, 1962). Atomic positions are given in Table 1.* The structure factors were weighted according to $w=(a+$ $\left.F_{o}+c F^{2}{ }_{o}\right)^{-1}$ (Cruickshank, 1965) with $a=80.0$ and $c=0.003$.

[^1]
[^0]:    * Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33912 ( 22 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^1]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publications No. SUP 33922 ( 21 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

